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The 2023 Nobel Prize in Physics spotlights the techniques to generate attosecond light pulses. The 
generation of attosecond pulses heralds a new era in understanding electron dynamics. This perspective 
traces the evolution of ultrafast science, from early microwave electronics to the recent breakthroughs in 
attosecond pulse generation and measurement. Key milestones, such as high harmonic generation, the 
RABBITT method, attosecond streaking camera, etc, illuminate our journey toward capturing the transient 
electron motions in atoms. Recent discoveries, including zeptosecond delays in H2 single-photon double 
ionization and the potential of attosecond “electron” pulses despite challenges, etc., hint at an exciting 
future for ultrafast studies.

Unveiling the Dance of Electrons: The Birth of 
Attosecond Science
The Nobel Prize in Physics for 2023 was awarded to Pierre Agostini, 
Ferenc Krausz, and Anne L’Huillier for pioneering methods to gen-
erate attosecond light pulses [1]. These groundbreaking techniques 
offer unprecedented time resolution to access ultrafast dynamics 
of electrons in materials, marking a new chapter in the exploration 
of the “world of electrons”.

Our world thrives on diverse material properties, such as con-
ductivity, insulativity, magnetism, superconductivity, mechanical 
strength, etc. These properties, however, hinge on the dynamics 
of electrons. At the atomic level, electrons orbiting nuclei deter-
mine the very nature of chemical bonds and, subsequently, the 
macro properties of matter. Given this, to grasp the electron 
dynamics in atoms, we need an immensely high-resolution tem-
poral “camera”. With the Bohr model, it is deduced that an elec-
tron’s journey around its 1s orbit in a hydrogen atom roughly 
takes about 150 as [2]. Attosecond represents a billion-billionth 
of a second—a truly atomic time scale. Tracking such evanescent 
electron motions demands the probes that operate in the realm 
of attoseconds.

In the early 1960s, microwave electronics was central to ultra-
fast science [3]. However, due to Coulomb interactions, the time 
scale measurable is limited to the picosecond range. On the other 
hand, the ultrashort laser pulse technique has seen very impres-
sive advances. The journey of ultrashort pulse generation has its 
origins in the development since mode-locking techniques in the 
1960s [4]. Early mode-locked lasers, using active devices like 
acousto-optic modulators, produced picosecond pulses. After 
that, it was the advent of passive mode locking with saturable 
absorbers that led to the generation of subpicosecond pulses in 

the 1970s [5]. In 1974, the dye lasers mode-locked with Kerr lens 
was proved to be instrumental in producing femtosecond pulses 
[6]. The transition from picoseconds to femtoseconds was further 
enhanced with the introduction of chirped pulse amplification 
by Strickland and Mourou in 1985 [7], which help great enhance 
the peak power and intensity of femtosecond lasers. The discovery 
eventually earn them the winners of 2018 Nobel Prize in Physics 
[8]. However, the achievable shortest laser pulse is about 4 fs via 
the laser-optical technique [9,10]. To generate even shorter pulses, 
one needs to shift the paradigm. These efforts yielded limited 
results until 2001 when attosecond science, made possible by 
“lightwave electronics”, became the Nobel-prized innovation.

The essence of lightwave electronics is using a controllable 
strong laser field to manipulate the electron–atom interactions, 
producing shorter light pulses [3]. In 1979, Pierre Agostini et al. 
discovered a benchmark strong-field phenomenon called “above 
threshold ionization (ATI)” [11]. Here, the electrons in atoms 
absorb multiple photons, being ionized beyond the atomic ion-
ization energy. Another important discovery in 1987 by 
A. L’Huillier et al. revealed that the rare gas atoms (like Xe, Kr, and 
Ar) exposed to an infrared light field exceeding 1013 W/cm2 
would yield the high-order harmonic, termed “high harmonic 
generation (HHG)” [12]. This highly nonlinear process, along 
with ATI, was very intuitively tied to attosecond pulse genera-
tion, leading researchers to delve deeper into the theoretical 
understanding. In the early 1990s, a collaboration involving 
Kulander, Anne L’Huillier, and Kenneth Schafer worked on the 
theoretical models for HHG [13]. Kulander introduced a semi-
classical model termed “the re-collision model” at a conference 
in Belgium [14], which was published in 1993 [15]. Around the 
same time, Paul Corkum proposed the 3-step model to detail 
the description of the ATI and HHG process [16]. In 1994, a 
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quantum theory was developed, confirming these earlier semi-
classical explanations [17]. The re-collision model provides a 
very clear picture to calculate the cutoff frequency for HHG, 
namely, Ec = Ip + 3.17Up, where Ip and Up ∝ λ2I are the ionization 
potential of atoms and ponderomotive energy in the oscillating 
driving field, respectively [18].

Upon theoretically unveiling the physics behind HHG, research-
ers then began to explore the ideas for generating attosecond pulses. 
Remarkably, Farkas and Toth mentioned the possibility of gener-
ating attosecond pulses using HHG for the first time in 1992 [19]. 
L’Huillier and Lewenstein conceived the first proposal to generate 
the attosecond pulse train in 1996 [20]. Following the original ideas 
of the 2-color photoionization by Cionga et al. and Véniard et al. 
[21,22], Agostini’s team demonstrated the so-called “Reconstruction 
of Attosecond Beating by Interference of Two-photon Transitions 
(RABBITT)” method experimentally to measure the temporal 
width of attosecond pulses in these trains [23]. Aiming for single 
attosecond pulses, Corkum, Burnett, and Ivanov suggested con-
straining HHG within a single cycle [24]. Concurrently, Schafer 
and Kulander proposed harnessing the cutoff region harmonics 
to achieve the isolated attosecond pulse [25]. In the same year, 
Kapteyn–Murnane’s group demonstrated the possibility of gener-
ating isolated attosecond pulses using the cutoff of the harmonics 
generated by a few-cycle pulse [26]. Experimental techniques 
advanced soon after, with teams led by Krausz in Vienna and Nisoli 
in Milan making the breakthroughs [27,28]. Finally, in 2001, 
Agostini’s group in Paris-Saclay generated a 250-as pulse sequence, 
whose pulse length is characterized by the RABBITT method [29]. 
Meanwhile, in Vienna, Krausz’s team produced a 650-as isolated 
pulse based on the theory proposed by Shafer and Kulander. Since 
then, the era of attosecond is coming [30].

From Mystery to Half-mastery:  
Rapid Advancements in Attosecond Techniques 
Since Its Birth
Before and after the first successful generation of isolated atto-
second pulses, other experimental methods, such as polarization 
gating [24,31,32], double optical gating [33,34], ionization gat-
ing, and photonic streaking [35,36], have progressively emerged. 
Notably, the amplified few-cycle femtosecond pulses with the 
stabilized and controlled carrier-envelope phase were realized 
in 2003 [37], leveraging the contribution from another Noble 
Prize in Physics in 2005 [38].

Around 2010, a palpable improvement occurred. Until then, 
the Ti:sapphire laser was the go-to driving light source, con-
straining the HHG cutoff energy to roughly 100 eV and a rep-
etition rate of ~1 kHz [39]. To generate the shorter attosecond 
pulses, the mid-infrared driving lasers rise in prominence. Thanks 
to the optical parametric amplifier [40], the harmonic photon 
energy, can be extended beyond 300 eV, nearly accessing the 
water-window spectral region [41]. Other methods like optical 
parametric chirped pulse amplification [42], and frequency- 
domain optical parametric amplification [43] also arose. Yet, 
this was not without challenges. The conversion efficiency 
η ∼ λ−6 faced a sharp decline as the driving wavelength increased 
[44,45]. Researchers attributed this to electron wavepacket spread-
ing and the increasing harmonic order. Significant efforts were 
made to optimize the waveform of the driving laser pulse [46,47], 
increasing its energy [48] and the repetition rate [49]. While 
simply amplifying the driving laser’s power seemed an obvious 
choice to intensify the attosecond pulse, the ionization would 

pose limitations. Researchers then veered toward a loose-focusing 
methodology to expand the active area [50,51]. Due to the 
higher electron density and harmonic generation efficiency, 
HHG via liquids and solids, together with its optical properties 
also attracts much attention [52–57]. Beyond HHG, other meth-
ods such as x-ray free electron laser and nonlinear Compton 
scattering were developed to generate attosecond pulses in x-ray 
[58–60] or γ-ray range [61]. To date, the isolated attosecond 
pulse has been shortened to a pulse duration of approximately 
50 as [32,62]. A maximum repetition rate of a few MHz and a 
maximum average flux of about 4.4 × 10 photons/s/1%Bw are 
accessible [63]. On another track, the proposals and experiments 
have been advanced for generating attosecond pulses with dis-
tinct spin and orbital angular momentum structures [64–77]. 
These structural light fields enhance the potential functionalities 
of attosecond pulses.

With the advancement of attosecond pulse generation technol-
ogy, the measurement techniques for these pulses have significant 
progress. In addition to RABBITT and attosecond streak camera 
[78,79], U. Keller and colleagues from ETH Zurich demonstrated 
the “attosecond angular streaking method” based on ionization in 
few-cycle elliptically/circularly polarized light fields in 2008 [80]. 
This method is also referred to as the “attoclock”. In 2018, this 
technique was further developed into the so-called “dual-pointer” 
attoclock by our group from PKU China [81]. The RABBITT 
approach can be integrated with the streaking method, leading to 
the FROG-CRAB method, which is capable of not only recon-
structing attosecond pulses but also the driving infrared light [82]. 
Besides these “ex situ” techniques, methods that do not require a 
second gas target (“in situ” methods) have been introduced. For 
example, utilizing a 2-color light field breaks the symmetry of 
electron trajectory, leading to the generation of even-order high 
harmonics [83]. The same analysis akin to the RABBITT method 
would provide temporal information about attosecond pulses. 
Another promising technique using a 2-color field is the “petahertz 
optical oscilloscope” [84]. The “photonic streaking” method, also 
known as the “attosecond lighthouse”, has garnered much attention 
due to its capability to select single pulses from an attosecond pulse 
train [85–87]. Lastly, attosecond transient absorption spectros-
copy, one of the attosecond measurement techniques involving 
the pump-probe process, has been experimentally realized in sev-
eral laboratories [88–92].

Since its infancy, the technique of attosecond generation has 
been applied to the study of various ultrafast dynamical pro-
cesses [93–95], most typically trying to address questions con-
cerning “ionization time” and “tunneling time” [96]. Concepts 
such as “Wigner time delay”, and “continuum-continuum time 
delay” have been studied, which are crucial for understand-
ing the fundamentals of quantum physics [97–101]. Beyond the 
study of ionization phenomena in atomic gases [102], attosec-
ond science has also been employed in the research of dynamics 
in molecules [103–108], liquids [109,110], and other condensed 
matter systems [109,111–115]. On another front, attosecond 
pulses are also employed to comprehend and modify the func-
tioning of chemical–biological systems [116–118].

Recently, the fusion of attosecond science and quantum optics 
has become a focal point of recent research [119–121]. Here, the 
driving light is interpreted quantum-mechanically, shedding light 
on quantum effects that had been previously neglected. Pioneered 
by Gorlach and his team, a theoretical framework where HHG 
through quantum light source exhibits marked differences from 
those generated classically was proposed [122]. Particularly, the 
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resulting harmonic spectrum extends its cutoff by an impressive 
factor when irradiated using this quantum source, marking 
a notable stride in the realm of quantum optics. Parallelly, 
Andrea Pizzi and colleagues unveiled that when quantum- 
correlated atoms are subjected to intense laser fields, the emitted 
harmonics, too, bear the quantum correlations [123]. These har-
monics exhibit exotic quantum features, deviating significantly 
from classical expectations. These studies not only advance our 
comprehension of HHG within a full-quantum framework but 
also pave the way for novel experimental methodologies that may 
redefine quantum optics with attosecond photons. As we con-
tinue to perceive quantum worlds, such pioneering research offers 
promising horizons.

The Flash Future: Attoseconds Boosting 
Ultrafast Science
The winding evolution of attosecond science, from infancy to 
thriving, undeniably opens a new page on contemporary physics. 
The past 2 decades have witnessed this field transcend from mere 
theoretical possibilities to fruitful experimental outcomes, greatly 
furthering our grasp of ultrafast electron dynamics. Each chal-
lenge overcome becomes a stepping stone to the next horizon.

The present breakthrough promises even more exciting vistas. 
As we further refine and perfect attosecond pulse generation and 
measurement techniques, our capability to explore and manipu-
late the ultrafast world will be enriched. This, in turn, has pro-
found implications for diverse domains, enriching our collective 
knowledge base. Thus, it can be confidently asserted that attosec-
ond pulse technology will be pivotal in advancing tomorrow’s 
science. For instance, compressing pulse duration even further 
and achieving higher repetition rates, ultimately realizing true 
attosecond lasers, will vastly enrich the tools available for studying 
atomic-molecular physics, condensed matter physics, and mate-
rial science. Pushing pulse compression to atomic characteristic 
time (~24 as) will facilitate answering fundamental questions in 
quantum physics. Structural attosecond light can be instrumental 
in understanding and modifying biological and chemical chiral 
molecules. Additionally, the pursuit of higher power and photon 
flux in attosecond pulses will refresh the field of high-energy 
physics. Last but not least, as the integration of attosecond science 
and quantum optics rises, we earn a deeper understanding of 
light–matter interactions in the quantum domain.

People never stop probing into the material world on increas-
ingly finer temporal and spatial scales. In 2020, R. Dörner’s group 
from the University of Frankfurt reported the observation of a 
time delay of 247 zs (1 zs = 10−21 s) between electrons emitted 
from different centers of the H2 molecule [124]. This delay essen-
tially reflects the time taken for light to traverse from one end of 
an H atom to the other in the H2 molecule. As attosecond physics 
flourishes, the emergence of zeptosecond physics beckons.

Electron pulses, much like their optical counterparts, can be 
compressed into an atomic time scale [125–129]. After inter-
acting with an optical near field, these free electrons, upon trav-
eling a certain distance, evolved into a train of temporal attosecond 
pulses. This is achievable in 4-dimensional ultrafast transmission 
electron microscopy [130,131]. In the realm of free electrons, 
there exists a method analogous to RABBITT for tomography 
[132]. Nowadays, many proposals and experiments regarding 
attosecond electron pulses have been demonstrated [133–139]; 
however, due to the Coulomb repulsion among electrons, their 
practical application remains a challenge.

The road ahead, while challenging, gleams with the promise 
of further revelations and deeper insights, ensuring that the 
“world of electrons” persists in the dynamic and ever-evolving 
frontier of ultrafast science.
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